Microtubule Nucleation in Mitosis by a RanGTP-Dependent Protein Complex
نویسندگان
چکیده
BACKGROUND The γ-tubulin ring complex (γTuRC) is a multisubunit complex responsible for microtubule (MT) nucleation in eukaryotic cells. During mitosis, its spatial and temporal regulation promotes MT nucleation through different pathways. One of them is triggered around the chromosomes by RanGTP. Chromosomal MTs are essential for functional spindle assembly, but the mechanism by which RanGTP activates MT nucleation has not yet been resolved. RESULTS We used a combination of Xenopus egg extracts and in vitro experiments to dissect the mechanism by which RanGTP triggers MT nucleation. In egg extracts, NEDD1-coated beads promote MT nucleation only in the presence of RanGTP. We show that RanGTP promotes a direct interaction between one of its targets, TPX2, and XRHAMM that defines a specific γTuRC subcomplex. Through depletion/add-back experiments using mutant forms of TPX2 and NEDD1, we show that the activation of MT nucleation by RanGTP requires both NEDD1 phosphorylation on S405 by the TPX2-activated Aurora A and the recruitment of the complex through a TPX2-dependent mechanism. CONCLUSIONS The XRHAMM-γTuRC complex is the target for activation by RanGTP that promotes an interaction between TPX2 and XRHAMM. The resulting TPX2-RHAMM-γTuRC supracomplex fulfills the two essential requirements for the activation of MT nucleation by RanGTP: NEDD1 phosphorylation on S405 by the TPX2-activated Aurora A and the recruitment of the complex onto a TPX2-dependent scaffold. Our data identify TPX2 as the only direct RanGTP target and NEDD1 as the only Aurora A substrate essential for the activation of the RanGTP-dependent MT nucleation pathway.
منابع مشابه
Localized RanGTP accumulation promotes microtubule nucleation at kinetochores in somatic mammalian cells.
Centrosomes are the major sites for microtubule nucleation in mammalian cells, although both chromatin- and kinetochore-mediated microtubule nucleation have been observed during spindle assembly. As yet, it is still unclear whether these pathways are coregulated, and the molecular requirements for microtubule nucleation at kinetochore are not fully understood. This work demonstrates that kineto...
متن کاملISWI is a RanGTP-dependent MAP required for chromosome segregation
Production of RanGTP around chromosomes induces spindle assembly by activating nuclear localization signal (NLS)-containing factors. Here, we show that the NLS protein ISWI, a known chromatin-remodeling ATPase, is a RanGTP-dependent microtubule (MT)-associated protein. Recombinant ISWI induces MT nucleation, stabilization, and bundling in vitro. In Xenopus culture cells and egg extract, ISWI lo...
متن کاملThe Role of NEDD1 Phosphorylation by Aurora A in Chromosomal Microtubule Nucleation and Spindle Function
Chromatin directs de novo microtubule (MT) nucleation in dividing cells by generating a gradient of GTP-bound Ran protein (RanGTP) that controls the activity of a number of spindle assembly factors (SAFs). It is now well established that these MTs are essential for the assembly of a functional bipolar spindle. Although it has been shown that RanGTP-dependent MT nucleation requires γ-tubulin and...
متن کاملCharacterization of the TPX2 domains involved in microtubule nucleation and spindle assembly in Xenopus egg extracts.
TPX2 has multiple functions during mitosis, including microtubule nucleation around the chromosomes and the targeting of Xklp2 and Aurora A to the spindle. We have performed a detailed domain functional analysis of TPX2 and found that a large N-terminal domain containing the Aurora A binding peptide interacts directly with and nucleates microtubules in pure tubulin solutions. However, it cannot...
متن کاملPhosphorylation of Crm1 by CDK1-cyclin-B promotes Ran-dependent mitotic spindle assembly.
Mitotic spindle assembly in animal cells is orchestrated by a chromosome-dependent pathway that directs microtubule stabilization. RanGTP generated at chromosomes releases spindle assembly factors from inhibitory complexes with importins, the nuclear transport factors that facilitate protein import into the nucleus during interphase. In addition, the nuclear export factor Crm1 has been proposed...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Current Biology
دوره 25 شماره
صفحات -
تاریخ انتشار 2015